6.842 Randomness and Computation September 18, 2017

Lecture 4

Lecturer: Ronitt Rubinfeld Scribe: Tossaporn Saengja

1 Randomized complexity classes RP, BPP
Definition 1 A “language” L is a subset of 0,17
Definition 2 “P” is a class of languages with polynomial time deterministic algorithms A such that
X € L = A(z) accepts
X ¢ L = A(x) rejects
Definition 3 “RP” is a class of languages with polynomial time probabilistic algorithms A such that
X € L = Pr[A(z) accepts] > L

=2
X ¢ L = Pr[A(x) accepts] =0
This is called “1-sided error”

We can get more reliable answer by run A*(x) which is running k times of A(x) with fresh random coins
each time:

Algorithm If all £ runs reject then reject, else accept

Behavior of algorithms
x ¢ L = Prlaccept] =0

x € L = Prlaccept] > 1 —27F
1
B:Q‘k:kZIOgB

Definition 4 “BPP” is a class of languages with polynomial time probabilistic algorithms A such that

X € L = Pr[A(x) accepts] >

X ¢ L = Pr[A(x) accepts] <

W= Wl

This is called ”2-sided error”

We can still get a more reliable answer by running A for k times and taking the majority answer, yielding
the following behavior:

Prleach run is correct] >

[SVRN)

Primajority of runs correct] > 1 — Pr[majority incorrect]

i k
Za[i‘“ run correct| > 5
i=1
k k
2
E[Z O[ith run correct]} = Z E[O[i”h' run correct]] > gk
i=1

=1

By Chernoff bound with 3 = 1,

-($H2(%)k
2

;

k

k] <e

NG

Pri#runs correct < (1 —

Pri#runs correct < —] < e
Let k = 481og 3,
k
Pr{#runs correct < 5] <4

Pr{magjority of runs correct] >1—4¢

Observation 5 P C RP C BPP
An open question is whether P ~Z BpPP

2 Derandomization

2.1 via enumeration

Given probabilistic algorithm A and input x
r(n) is the number of random bits used by A on inputs of size n.

1. Run A on every random string of length r(|z|)

r(n) < runtime of A on inputs of size n

2. Output majority answer

Runtime O(2"(Mt(n)) where t(n) is the time bound of A

2.2 via pairwise independence
2.2.1 Max Cut problem

Given G(V, E), output partition V into S, T to maximize |{(u,v)|u € S,V € T}| (i.e. number of cuts)

Randomized algorithm
e Flipn coinsry---7,

e Put vertex 7 on side r;

Analysis let

1y, = 1 if ry #£ 1y, 0 otherwise
E
Blewt] =] Y L= Y Ellunl= Y Prin#n]=12
(u,v)EE (u,v)EE (u,v)EE

This is “2-approximation” as the best answer could be |E|

2.2.2 Pairwise Independence

Definition 6 n values x1 -+ xn,x; € T such that |T| =t
“independent” if Vby - - - by, € T™, Pr(zy - Tp = by ---by] =
“pairwise independent” if Vi # j,bib; € T?, Priz;x; = bib;] = 75
“k-wise independent” if V distinct iy -+ i, by, -+ b, € T®, Prlz; - xp = by, -+ b,] = 75

~+

Example say for indices 1,2 b1by = 00 = Pr[x; = 0,29 = 0] = % =1

2.2.3 Using Pairwise Independence in Max Cut

by by =

“randomness generator” ‘ =ry---r, = | Max Cut algorithm

From the above example: m =2 n>m n=23

Observation 7 If the random bits of the generator are good enough for the algorithm, then one can
derandomize the algorithm by doing enumeration on the m bits going into the randomness generator.
This would require time O(2™), rather than the usual O(2™)

Idea Use m = logn independent random bits, and turn them into n pairwise independent random bits

How to generate?
1. Choose m truly random bits by - - - by,
2. Vs C [m]st. s #0, set cs = @, qbi
3. Output all ¢, = 2™~ ! bits

exercise why are they pair-wise independent?

Algorithm

For all choices of by - - - biogn+1
¢ Run Max Cut using random bits of randomness generator on input b - - - bigg n+1
e Evaluate cut size

e Output best cut size
Runtime 2'°¢"+1x (runtime of Max Cut + runtime of generator)

Randomness generator as a function b;---b,, a,b € Z; where ¢ prime

ri < a; +bmod q,Vi € 0...q — 1
b,a+ b mod q,2a + b mod q

can take a,b,c and use ci? + ai + b mod ¢ to do 3-wise = can generalize to k-wise

