
6.842 Randomness and Computation September 18, 2017

Lecture 4
Lecturer: Ronitt Rubinfeld Scribe: Tossaporn Saengja

1 Randomized complexity classes RP, BPP

Definition 1 A “language” L is a subset of 0,1*

Definition 2 “P” is a class of languages with polynomial time deterministic algorithms A such that

X ∈ L⇒ A(x) accepts

X /∈ L⇒ A(x) rejects

Definition 3 “RP” is a class of languages with polynomial time probabilistic algorithms A such that

X ∈ L⇒ Pr[A(x) accepts] ≥ 1

2

X /∈ L⇒ Pr[A(x) accepts] = 0

This is called “1-sided error”

We can get more reliable answer by run Ak(x) which is running k times of A(x) with fresh random coins
each time:

Algorithm If all k runs reject then reject, else accept

Behavior of algorithms
x /∈ L⇒ Pr[accept] = 0

x ∈ L⇒ Pr[accept] ≥ 1− 2−k

β = 2−k ⇒ k ≥ log
1

β

Definition 4 “BPP” is a class of languages with polynomial time probabilistic algorithms A such that

X ∈ L⇒ Pr[A(x) accepts] ≥ 2

3

X /∈ L⇒ Pr[A(x) accepts] ≤ 1

3

This is called ”2-sided error”

We can still get a more reliable answer by running A for k times and taking the majority answer, yielding
the following behavior:

Pr[each run is correct] ≥ 2

3

Pr[majority of runs correct] ≥ 1− Pr[majority incorrect]
k∑
i=1

σ[ith run correct] >
k

2

E[

k∑
i=1

σ[ith run correct]] =

k∑
i=1

E[σ[ith run correct]] ≥
2

3
k

1

By Chernoff bound with β = 1
4 ,

Pr[#runs correct < (1− 1

4
)
2

3
k] ≤ e

−(1
4
)2(2

3
)k

2

Pr[#runs correct <
k

2
] ≤ e− k

48

Let k = 48 log 1
δ ,

Pr[#runs correct <
k

2
] ≤ δ

Pr[majority of runs correct] ≥ 1− δ

Observation 5 P ⊆ RP ⊆ BPP
An open question is whether P

?
= BPP

2 Derandomization

2.1 via enumeration

Given probabilistic algorithm A and input x
r(n) is the number of random bits used by A on inputs of size n.

1. Run A on every random string of length r(|x|)
r(n) ≤ runtime of A on inputs of size n

2. Output majority answer

Runtime O(2r(n)t(n)) where t(n) is the time bound of A

2.2 via pairwise independence

2.2.1 Max Cut problem

Given G(V,E), output partition V into S, T to maximize |{(u, v)|u ∈ S, V ∈ T}| (i.e. number of cuts)

Randomized algorithm

• Flip n coins r1 · · · rn

• Put vertex i on side ri

Analysis let
1u,v = 1 if ru 6= rv, 0 otherwise

E[cut] = E[
∑

(u,v)∈E

1u,v] =
∑

(u,v)∈E

E[1(u,v)] =
∑

(u,v)∈E

Pr[ru 6= rv] =
|E|
2

This is “2-approximation” as the best answer could be |E|

2

2.2.2 Pairwise Independence

Definition 6 n values x1 · · ·xn, xi ∈ T such that |T | = t
“independent” if ∀b1 · · · bn ∈ Tn, P r[x1 · · ·xn = b1 · · · bn] = 1

tn

“pairwise independent” if ∀i 6= j, bibj ∈ T 2, P r[xixj = bibj] = 1
t2

“k-wise independent” if ∀ distinct i1 · · · ik, bi1 · · · bik ∈ T k, P r[xi · · ·xk = bi1 · · · bik] = 1
tk

Example

r1 r2 r3
0 0 0
0 1 1
1 0 1
1 1 0

say for indices 1,2 b1b2 = 00⇒ Pr[x1 = 0, x2 = 0] = 1
4 = 1

t2

2.2.3 Using Pairwise Independence in Max Cut

b1 · · · bm ⇒ “randomness generator” ⇒ r1 · · · rn ⇒ Max Cut algorithm

From the above example: m = 2 n ≥ m n = 3

Observation 7 If the random bits of the generator are good enough for the algorithm, then one can
derandomize the algorithm by doing enumeration on the m bits going into the randomness generator.
This would require time O(2m), rather than the usual O(2n)

Idea Use m = log n independent random bits, and turn them into n pairwise independent random bits

How to generate?

1. Choose m truly random bits b1 · · · bm

2. ∀s ⊂ [m] s.t. s 6= ∅, set cs =
⊕

i∈S bi

3. Output all cs ⇒ 2m−1 bits

exercise why are they pair-wise independent?

Algorithm

For all choices of b1 · · · blogn+1

• Run Max Cut using random bits of randomness generator on input b1 · · · blogn+1

• Evaluate cut size

• Output best cut size

Runtime 2logn+1× (runtime of Max Cut + runtime of generator)

Randomness generator as a function b1 · · · bm a, b ∈ Zq where q prime

ri ← ai + b mod q,∀i ∈ 0...q − 1

b, a+ b mod q, 2a+ b mod q

can take a, b, c and use ci2 + ai+ b mod q to do 3-wise ⇒ can generalize to k-wise

3

